Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
EEG Electrode Selection for a Two-Class Motor Imagery Task in a BCI Using fNIRS Prior Data
Ist Teil von
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, Vol.2021, p.6627-6630
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
This study investigated the possibility of using functional near infrared spectroscopy (fNIRS) during right- and left-hand motor imagery tasks to select an optimum set of electroencephalography (EEG) electrodes for a brain computer interface. fNIRS has better spatial resolution allowing areas of brain activity to more readily be identified. The ReliefF algorithm was used to identify the most reliable fNIRS channels. Then, EEG electrodes adjacent to those channels were selected for classification. This study used three different classifiers of linear and quadratic discriminant analyses, and support vector machine to examine the proposed method.Clinical Relevance- Reducing the number of sensors in a BCI makes the system more usable for patients with severe disabilities.