Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 2343
The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Perspective on integrating machine learning into computational chemistry and materials science
Ist Teil von
  • The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903
Ort / Verlag
United States
Erscheinungsjahr
2021
Quelle
American Institute of Physics (AIP) Journals
Beschreibungen/Notizen
  • Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.
Sprache
Englisch
Identifikatoren
ISSN: 0021-9606
eISSN: 1089-7690
DOI: 10.1063/5.0047760
Titel-ID: cdi_pubmed_primary_34241249
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX