Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Changes in outdoor air pollution due to COVID-19 lockdowns differ by pollutant: evidence from Scotland
Ist Teil von
Occupational and environmental medicine (London, England), 2020-11, Vol.77 (11), p.798-800
Ort / Verlag
England: BMJ Publishing Group LTD
Erscheinungsjahr
2020
Quelle
MEDLINE
Beschreibungen/Notizen
ObjectivesTo examine the impact of COVID-19 lockdown restrictions in March/April 2020 on concentrations of nitrogen dioxide (NO2) and ambient fine particulate matter (PM2.5) air pollution measured at roadside monitors across Scotland by comparing data with previous years.MethodsPublicly available data of PM2.5 concentrations from reference monitoring systems at sites across Scotland were extracted for the 31-day period immediately following the imposition of lockdown rules on 23 March 2020. Similar data for 2017, 2018 and 2019 were gathered for comparison. Mean period values were calculated from the hourly data and logged values compared using pairwise t-tests. Weather effects were corrected using meteorological normalisation.ResultsNO2 concentrations were significantly lower in the 2020 lockdown period than in the previous 3 years (p<0.001). Mean outdoor PM2.5 concentrations in 2020 were much lower than during the same period in 2019 (p<0.001). However, despite UK motor vehicle journeys reducing by 65%, concentrations in 2020 were within 1 µg/m3 of those measured in 2017 (p=0.66) and 2018 (p<0.001), suggesting that traffic-related emissions may not explain variability of PM2.5 in outdoor air in Scotland.ConclusionsThe impact of reductions in motor vehicle journeys during COVID-19 lockdown restrictions may not have reduced ambient PM2.5 concentrations in some countries. There is also a need for work to better understand how movement restrictions may have impacted personal exposure to air pollutants generated within indoor environments.