Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 23
IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.1050-1065
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Prior Guided Feature Enrichment Network for Few-Shot Segmentation
Ist Teil von
  • IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.1050-1065
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching query features with support features and prior masks. Extensive experiments on PASCAL-5<inline-formula><tex-math notation="LaTeX">^i</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mi>i</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="tian-ieq1-3013717.gif"/> </inline-formula> and COCO prove that the proposed prior generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples.
Sprache
Englisch
Identifikatoren
ISSN: 0162-8828
eISSN: 1939-3539, 2160-9292
DOI: 10.1109/TPAMI.2020.3013717
Titel-ID: cdi_pubmed_primary_32750843

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX