Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Activate capture and digital counting (AC + DC) assay for protein biomarker detection integrated with a self-powered microfluidic cartridge
Ist Teil von
Lab on a chip, 2019-12, Vol.19 (23), p.3943-3953
Ort / Verlag
England: Royal Society of Chemistry
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
We demonstrate a rapid, 2-step, and ultrasensitive assay approach for quantification of target protein molecules from a single droplet test sample. The assay is comprised of antibody-conjugated gold nanoparticles (AuNPs) that are "activated" when they are mixed with the test sample and bind their targets. The resulting liquid is passed through a microfluidic channel with a photonic crystal (PC) biosensor that is functionalized with secondary antibodies to the target biomarker, so that only activated AuNPs are captured. Utilizing recently demonstrated hybrid optical coupling between the plasmon resonance of the AuNP and the resonance of the PC, each captured AuNP efficiently quenches the resonant reflection of the PC, thus enabling the captured AuNPs to be digitally counted with high signal-to-noise. To achieve a 2-step assay process that is performed on a single droplet test sample without washing steps or active pump elements, controlled single-pass flow rate is obtained with an absorbing paper pad waste reservoir embedded in a microfluidic cartridge. We use the activate capture and digital counting (AC + DC) approach to demonstrate HIV-1 capsid antigen p24 detection from a 40 μL spiked-in human serum sample at a one thousand-fold dynamic range (1-10
3
pg mL
−1
) with only a 35-minute process that is compatible with point-of-care (POC) analysis. The AC + DC approach allows for ultrasensitive and ultrafast biomolecule detection, with potential applications in infectious disease diagnostics and early stage disease monitoring.
We demonstrate a rapid and ultrasensitive assay for protein quantification through the nanoparticle-photonic crystal coupling embedded in microfluidic cartridges.