Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 46
IEEE transactions on nanobioscience, 2019-04, Vol.18 (2), p.176-190
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Spiking Neural P Systems With Learning Functions
Ist Teil von
  • IEEE transactions on nanobioscience, 2019-04, Vol.18 (2), p.176-190
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Spiking neural P systems (SN P systems) are a class of distributed and parallel neural-like computing models, inspired from the way neurons communicate by means of spikes. In this paper, a new variant of the systems, called SN P systems with learning functions, is introduced. Such systems can dynamically strengthen and weaken connections among neurons during the computation. A class of specific SN P systems with simple Hebbian learning function is constructed to recognize English letters. The experimental results show that the SN P systems achieve average accuracy rate 98.76% in the test case without noise. In the test cases with low, medium, and high noises, the SN P systems outperform back propagation neural networks and probabilistic neural networks. Moreover, comparing with spiking neural networks, SN P systems perform a little better in recognizing letters with noise. The result of this paper is promising in terms of the fact that it is the first attempt to use SN P systems in pattern recognition after many theoretical advancements of SN P systems, and SN P systems exhibit the feasibility for tackling pattern recognition problems.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX