Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Hepcidin Deficiency Protects Against Atherosclerosis
Ist Teil von
Arteriosclerosis, thrombosis, and vascular biology, 2019-02, Vol.39 (2), p.178-187
Ort / Verlag
United States
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp
/ Ldlr
) mice and Hamp
/ Ldlr
control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp
/ Ldlr
mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp
/ Ldlr
mice was considered. Hamp
/ Ldlr
mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp
/ Ldlr
mice. Aortic macrophages from Hamp
/ Ldlr
mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp
/ Ldlr
mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.