Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
DDC-Outlier: Preventing Medication Errors Using Unsupervised Learning
Ist Teil von
IEEE journal of biomedical and health informatics, 2019-03, Vol.23 (2), p.874-881
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
Electronic health records have brought valuable improvements to hospital practices by integrating patient information. In fact, the understanding of these data can prevent mistakes that may put patients' lives at risk. Nonetheless, to the best of our knowledge, there are no previous studies addressing the automatic detection of outlier prescriptions, regarding dosage and frequency. In this paper, we propose an unsupervised method, called density-distance-centrality (DDC), to detect potential outlier prescriptions. A dataset with 563 thousand prescribed medications was used to assess our proposed approach against different state-of-the-art techniques for outlier detection. In the experiments, our approach achieves better results in the task of overdose and underdose detection in medical prescriptions, compared to other methods applied to this problem. Additionally, most of the false positive instances detected by our algorithm were potential prescriptions errors.