Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 37
IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.152-162
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Do Convolutional Neural Networks Learn Class Hierarchy?
Ist Teil von
  • IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.152-162
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX