Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.
Aerial and underwater survey data combined with satellite-derived measurements of sea surface temperature over the past two decades show that multiple mass-bleaching events have expanded to encompass virtually all of the Great Barrier Reef.
Barrier reef bleaching
The Great Barrier Reef is the world's largest reef system, but is being increasingly affected by climate change. Terry Hughes and colleagues examine changes in the geographic footprint of mass bleaching events on the Great Barrier Reef over the last two decades, using aerial and underwater survey data combined with satellite-derived measurements of sea surface temperature. They show that the cumulative footprint of multiple bleaching events has expanded to encompass virtually all of the Great Barrier Reef, reducing the number and size of potential refuges. The 2016 bleaching event proved the most severe, affecting 91% of individual reefs. The authors call for immediate global action to reduce the magnitude of climate warming in order to secure a future for coral reefs.