Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Multi-Block Bipartite Graph for Integrative Genomic Analysis
Ist Teil von
IEEE/ACM transactions on computational biology and bioinformatics, 2017-11, Vol.14 (6), p.1350-1358
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Xplore
Beschreibungen/Notizen
Human diseases involve a sequence of complex interactions between multiple biological processes. In particular, multiple genomic data such as Single Nucleotide Polymorphism (SNP), Copy Number Variation (CNV), DNA Methylation (DM), and their interactions simultaneously play an important role in human diseases. However, despite the widely known complex multi-layer biological processes and increased availability of the heterogeneous genomic data, most research has considered only a single type of genomic data. Furthermore, recent integrative genomic studies for the multiple genomic data have also been facing difficulties due to the high-dimensionality and complexity, especially when considering their intraand inter-block interactions. In this paper, we introduce a novel multi-block bipartite graph and its inference methods, MB2I and sMB2I, for the integrative genomic study. The proposed methods not only integrate multiple genomic data but also incorporate intra/inter-block interactions by using a multi-block bipartite graph. In addition, the methods can be used to predict quantitative traits (e.g., gene expression, survival time) from the multi-block genomic data. The performance was assessed by simulation experiments that implement practical situations. We also applied the method to the human brain data of psychiatric disorders. The experimental results were analyzed by maximum edge biclique and biclustering, and biological findings were discussed.