Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Current drug metabolism, 2017-01, Vol.18 (1), p.50-61
Ort / Verlag
Netherlands
Erscheinungsjahr
2017
Quelle
MEDLINE
Beschreibungen/Notizen
Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.