Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Nature neuroscience, 2016-03, Vol.19 (3), p.404-413
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Computational psychiatry as a bridge from neuroscience to clinical applications
Ist Teil von
  • Nature neuroscience, 2016-03, Vol.19 (3), p.404-413
Ort / Verlag
United States
Erscheinungsjahr
2016
Quelle
MEDLINE
Beschreibungen/Notizen
  • Translating advances in neuroscience into benefits for patients with mental illness presents enormous challenges because it involves both the most complex organ, the brain, and its interaction with a similarly complex environment. Dealing with such complexities demands powerful techniques. Computational psychiatry combines multiple levels and types of computation with multiple types of data in an effort to improve understanding, prediction and treatment of mental illness. Computational psychiatry, broadly defined, encompasses two complementary approaches: data driven and theory driven. Data-driven approaches apply machine-learning methods to high-dimensional data to improve classification of disease, predict treatment outcomes or improve treatment selection. These approaches are generally agnostic as to the underlying mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and abstraction. We review recent advances in both approaches, with an emphasis on clinical applications, and highlight the utility of combining them.
Sprache
Englisch
Identifikatoren
ISSN: 1097-6256
eISSN: 1546-1726
DOI: 10.1038/nn.4238
Titel-ID: cdi_pubmed_primary_26906507

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX