Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 1082
Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.E2705-E2714
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.E2705-E2714
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • Significance As an essential element for living organisms, zinc is a cofactor in many enzymes and regulatory proteins. After the surprising discovery of mobile zinc in synaptic vesicles throughout many areas of the brain, numerous investigators have studied its possible roles during neurotransmission. Nonetheless, knowledge of the physiology of zinc at the synapse is still in its infancy. Here, we show that synaptic and tonic zinc inhibit extrasynaptic NMDA receptors (NMDARs), which are widely distributed in the CNS and are important for normal and pathological excitatory signaling. Our work indicates that this newly discovered interaction between zinc and extrasynaptic NMDARs can provide a general mechanism for controlling neuronal excitability in the CNS. Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX