Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE transactions on pattern analysis and machine intelligence, 2012-11, Vol.34 (11), p.2233-2246
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images
Ist Teil von
  • IEEE transactions on pattern analysis and machine intelligence, 2012-11, Vol.34 (11), p.2233-2246
Ort / Verlag
Los Alamitos, CA: IEEE
Erscheinungsjahr
2012
Quelle
IEEE Electronic Library (IEL)【Remote access available】
Beschreibungen/Notizen
  • This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images. We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of ℓ 1 -norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX