Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 13024

Details

Autor(en) / Beteiligte
Titel
Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs, and humans
Ist Teil von
  • Drug metabolism and disposition, 2010-03, Vol.38 (3), p.498
Ort / Verlag
United States
Erscheinungsjahr
2010
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • PR-104 is the phosphate ester of a 3,5-dinitrobenzamide nitrogen mustard (PR-104A) that is reduced to active hydroxylamine and amine metabolites by reductases in tumors. In this study, we evaluate the excretion of [(3)H]PR-104 in mice and determine its metabolite profile in mice, rats, dogs, and humans after a single intravenous dose. Total radioactivity was rapidly and quantitatively excreted in mice, with cumulative excretion of 46% in urine and 50% in feces. The major urinary metabolites in mice were products from oxidative N-dealkylation and/or glutathione conjugation of the nitrogen mustard moiety, including subsequent mercapturic acid pathway metabolites. A similar metabolite profile was seen in mouse bile, mouse plasma, and rat urine and plasma. Dogs and humans also showed extensive thiol conjugation but little evidence of N-dealkylation. Humans, like rodents, showed appreciable reduced metabolites in plasma, but concentrations of the cytotoxic amine metabolite (PR-104M) were higher in mice than humans. The most conspicuous difference in metabolite profile was the much more extensive O-beta-glucuronidation of PR-104A in dogs and humans than in rodents. The structure of the O-beta-glucuronide (PR-104G) was confirmed by independent synthesis. Its urinary excretion was responsible for 13 +/- 2% of total dose in humans but only 0.8 +/- 0.1% in mice. Based on these metabolite profiles, biotransformation of PR-104 in rodents is markedly different from that in humans, suggesting that rodents may not be appropriate for modeling human biotransformation and toxicology of PR-104.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX