Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 249

Details

Autor(en) / Beteiligte
Titel
Evaluation of Respiratory Muscles Activity by Means of Cross Mutual Information Function at Different Levels of Ventilatory Effort
Ist Teil von
  • IEEE transactions on biomedical engineering, 2007-09, Vol.54 (9), p.1573-1582
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2007
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: 1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); 2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX