Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 83

Details

Autor(en) / Beteiligte
Titel
A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria
Ist Teil von
  • The Journal of biological chemistry, 2004-08, Vol.279 (35), p.36235
Ort / Verlag
United States
Erscheinungsjahr
2004
Quelle
MEDLINE
Beschreibungen/Notizen
  • Fatty acid translocase (FAT)/CD36 is a long chain fatty acid transporter present at the plasma membrane, as well as in intracellular pools of skeletal muscle. In this study, we assessed the unexpected presence of FAT/CD36 in both subsarcolemmal and intermyofibril fractions of highly purified mitochondria. Functional assessments demonstrated that the mitochondria could bind (14)C-labeled palmitate, but could only oxidize it in the presence of carnitine. However, the addition of sulfo-N-succinimidyl oleate, a known inhibitor of FAT/CD36, resulted in an 87 and 85% reduction of palmitate oxidation in subsarcolemmal and intermyofibril fractions, respectively. Further studies revealed that maximal carnitine palmitoyltransferase I (CPTI) activity in vitro was inhibited by succinimidyl oleate (42 and 48% reduction). Interestingly, CPTI immunoprecipitated with FAT/CD36, indicating a physical pairing. Tissue differences in mitochondrial FAT/CD36 protein follow the same pattern as the capacity for fatty acid oxidation (heart >> red muscle > white muscle). Additionally, chronic stimulation of hindlimb muscles (7 days) increased FAT/CD36 expression and also resulted in a concomitant increase in mitochondrial FAT/CD36 content (46 and 47% increase). Interestingly, with acute electrical stimulation of hindlimb muscles (30 min), FAT/CD36 expression was not altered, but there was an increase in the mitochondrial content of FAT/CD36 compared with the non-stimulated control limb (35 and 37% increase). Together, these data suggest a role for FAT/CD36 in mitochondrial long chain fatty acid uptake and demonstrate system flexibility to match FAT/CD36 mitochondrial content with an increased capacity for fatty acid oxidation, possibly involving translocation of FAT/CD36 to the mitochondria.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX