Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Localization and preferred orientations of ubiquinone homologs in model bilayers
Ist Teil von
Biochemistry and cell biology, 1992-06, Vol.70 (6), p.504-514
Ort / Verlag
Canada
Erscheinungsjahr
1992
Quelle
MEDLINE
Beschreibungen/Notizen
The localization of ubiquinone has been investigated in phospholipid bilayer vesicles in studies of fluorescence quenching of membrane-bound probes by ubiquinone homologs (Qn, where n is the number of the isoprenoid units of the chain). Fluorescence-quenching data obtained by using a set of anthroylstearate probes, having the fluorophore located at different depths, revealed that ubiquinone-3 is located throughout the whole bilayer thickness. From the bimolecular quenching constants in the membrane, lateral diffusion coefficients in two dimensions were calculated to span values of 10(-7)-10(-6) cm2.s-1. This suggests that ubiquinones laterally diffuse in a very fluid environment. On this basis, it is proposed that their translational diffusion in the bilayer takes place in two dimensions, with the quinone ring oscillating between the two bilayer surfaces within a hydrophobic environment not extending beyond the glycerol region. This model implies that the quinonic head is both settled near the polar surface of the bilayer and buried into the host hydrocarbon interior. This two-site distribution was confirmed for all Qn, except Q0, by their linear dichroism spectra in the bilayers provided by disc-like lyotropic nematic liquid crystals. These spectra also provided detailed information on the preferential orientations of the quinonic head of the different derivatives within the two sites. The mechanism by which the localization and orientation of Qn guest molecules inside the host bilayer is modulated by the isoprenoid chain length is discussed on a thermodynamical basis. Being that Qn is expected to be also widely contained in the highly curved cristae of the mitochondrial inner membrane, by using rod-like lyotropic nematic liquid crystals we searched out effects of the curvature of the host bilayer on those Qn distributions. The linear dichroism measurements reveal that Qn guest molecules are no longer obliged to find a partition between two different types of localizations when the host bilayer is highly curved. In this case all Qn, even the longest Q10, were found to stay parallel to the amphiphilic chains with a single site localization of the head near the polar interface. By the same linear dichroism technique, the local ordering of all Qn derivatives was also evaluated. The order parameters were found to be basically the same for all derivatives. This result is justified on the basis of the relaxation, caused by the surface curvature, of the lateral compression of the host chains.