Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Electrochemical processes on multi-component cathodic catalysts PtM and PtM1M2 (M = Co, Ni, Cr): the effect of surface composition on the catalyst stability and its activity in O2 reduction
Ist Teil von
Russian journal of electrochemistry, 2011-04, Vol.47 (4), p.380-386
Ort / Verlag
Dordrecht: SP MAIK Nauka/Interperiodica
Erscheinungsjahr
2011
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
The multi-component nanocatalysts based on platinum-transient metals alloys applied onto dispersed carbon material are considered as the most promising catalysts, which can be substituted for platinum in the fuel cell cathodes. The electrocatalytic activity of platinum in the PtM
1
/C and PtM
1
M
2
/C alloys increases by several times with simultaneous increase in the stability. From the results obtained by structural and electrochemical methods, it is found that the synthesized binary and ternary catalysts are the metal alloys, whose surface is enriched in platinum as a result of surface segregation and subsequent chemical or electrochemical treatment. Under the corrosive attack, the less-noble metal, which has not entered into the alloy, dissolves, and the core-shell structures form. The properties of platinum in the shell differ from its properties in Pt/C due to the ligand effect of the core (metal alloy). As a result, the surface coverage with oxygen chemisorbed from water decreases in the binary and ternary systems. This causes an increase of the catalytic activity in the O
2
reduction reaction due to a decline in the effect of surface blocking against molecular oxygen adsorption and a decrease in the platinum dissolution rate, because the oxidation of platinum by water is the onset of corrosion process. For the catalytic systems studied, the mass activity decreases in the following order: 20% Pt in PtCoCr/C > 7.3% Pt in PtCo/C ≥ 7.3% Pt in PtCr/C and PtNi/C ≥ 40% Pt/C. The application of PtCoCr/C catalyst as the cathode in a low-temperature hydrogen-air fuel cell enabled one to reduce the platinum consumption by one half on retention of its performance.