Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 46

Details

Autor(en) / Beteiligte
Titel
Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (48), p.19276-19281
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2011
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Large-scale transcription profiling via direct cDNA sequencing provides important insights as to how foundation species cope with increasing climatic extremes predicted under global warming. Species distributed along a thermal cline, such as the ecologically important seagrass Zostera marina, provide an opportunity to assess temperature effects on gene expression as a function of their long-term adaptation to heat stress. We exposed a southern and northern European population of Zostera marina from contrasting thermal environments to a realistic heat wave in a common-stress garden. In a fully crossed experiment, eight cDNA libraries, each comprising ∼125 000 reads, were obtained during and after a simulated heat wave, along with nonstressed control treatments. Although gene-expression patterns during stress were similar in both populations and were dominated by classical heat-shock proteins, transcription profiles diverged after the heat wave. Gene-expression patterns in southern genotypes returned to control values immediately, but genotypes from the northern site failed to recover and revealed the induction of genes involved in protein degradation, indicating failed metabolic compensation to high sea-surface temperature. We conclude that the return of gene-expression patterns during recovery provides critical information on thermal adaptation in aquatic habitats under climatic stress. As a unifying concept for ecological genomics, we propose transcriptomic resilience, analogous to ecological resilience, as an important measure to predict the tolerance of individuals and hence the fate of local populations in the face of global warming.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX