Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 93
Energy & environmental science, 2011-01, Vol.4 (8), p.2993-2998
2011

Details

Autor(en) / Beteiligte
Titel
Proton exchange membrane electrolysis sustained by water vapor
Ist Teil von
  • Energy & environmental science, 2011-01, Vol.4 (8), p.2993-2998
Erscheinungsjahr
2011
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The current-voltage characteristics of a proton exchange membrane (PEM) electrolyzer constructed with an IrRuOx water oxidation catalyst and a Pt black water reduction catalyst, under operation with water vapor from a humidified carrier gas, have been investigated as a function of the gas flow rate, the relative humidity, and the presence of oxygen. The performance of the system with water vapor was also compared to the performance when the device was immersed in liquid water. With a humidified Ar(g) input stream at 20 [degree]C, an electrolysis current density of 10 mA cm-2 was sustained at an applied voltage of [similar]1.6 V, with a current density of 20 mA cm-2 observed at [similar]1.7 V. In the system evaluated, at current densities 40 mA cm-2 the electrolysis of water vapor was limited by the mass flux of water to the PEM. At 40 mA cm-2, the electrolysis of water vapor supported a given current density at a lower applied bias than did the electrolysis of liquid water. The relative humidity of the input carrier gas strongly affected the current-voltage behavior, with lower electrolysis current density attributed to dehydration of the PEM at reduced humidity values. The results provide a proof-of-concept that, with sufficiently active catalysts, an efficient solar photoelectrolyzer could be operated only with water vapor as the feedstock, even at the low operating temperatures that may result in the absence of active heating. This approach therefore offers a route to avoid the light attenuation and mass transport limitations that are associated with bubble formation in these systems.
Sprache
Englisch
Identifikatoren
ISSN: 1754-5692
eISSN: 1754-5706
DOI: 10.1039/C1EE01203G
Titel-ID: cdi_proquest_miscellaneous_918050116

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX