Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The complex world of oligodendroglial differentiation inhibitors
Ist Teil von
Annals of neurology, 2011-04, Vol.69 (4), p.602-618
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc., A Wiley Company
Erscheinungsjahr
2011
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
Myelination is a central nervous system (CNS) process wherein oligodendrocyte‐axon interactions lead to the establishment of myelin sheaths that stabilize, protect, and electrically insulate axons. In inflammatory demyelinating diseases such as multiple sclerosis (MS), the degeneration and eventual loss of functional myelin sheaths slows and blocks saltatory conduction in axons, which results in clinical impairment. However, remyelination can occur, and lesions can be partially repaired, resulting in clinical remission. The recruitment and activation of resident oligodendrocyte precursor cells (OPCs) play a critical role in the repair process because these cells have the capacity to differentiate into functional myelinating cells. Mature oligodendrocytes, however, are thought to have lost the capacity to develop new myelin sheaths and frequently undergo programmed cell death in MS. The endogenous capacity to generate new oligodendrocytes in MS is limited, and this is predominantly due to the presence of inhibitory components that block OPC differentiation and maturation. Here, we present an overview of recently identified negative regulators of oligodendroglial differentiation and their potential relevance for CNS repair in MS. Because currently available immunomodulatory drugs for MS mainly target inflammatory cascades outside the brain and fail to repair existing lesions, achieving more efficient lesion repair constitutes an important goal for future MS therapies. Ann Neurol 2011;69:602–618