Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The dielectric spectra of aqueous suspensions of unilamellar liposomial vesicles built up by zwitterionic phospholipids (dipalmitoylphosphatidyl-choline, DPPC) were measured over the frequency range extending from 1 kHz to 10 MHz, where the interfacial polarization effects, due to the highly heterogeneous properties of the system, prevail. The dielectric parameters, i.e., the permittivity
ε′(
ω) and the electrical conductivity
σ(
ω), have been analyzed in terms of dielectric models based on the effective medium approximation theory, considering the contribution associated with the bulk ion diffusion on both sides of the aqueous interfaces. The zwitterionic character of the lipidic bilayer has been modeled by introducing an “apparent” surface charge density at both the inner and outer aqueous interface, which causes a tangential ion diffusion similar to the one occurring in charged colloidal particle suspensions. A good agreement with the experimental results has been found for all the liposomes investigated, with size ranging from 100 to 1000 nm in diameter, and the most relevant parameters have briefly discussed in the light of the effective medium approximation theory.