Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 5980
Journal of applied physiology (1985), 2011-03, Vol.110 (3), p.627-637
2011
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae
Ist Teil von
  • Journal of applied physiology (1985), 2011-03, Vol.110 (3), p.627-637
Ort / Verlag
Bethesda, MD: American Physiological Society
Erscheinungsjahr
2011
Quelle
MEDLINE
Beschreibungen/Notizen
  • Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10-30% maximum voluntary torque 2-3 s into the stimulation (Time(1)). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20-100-20 Hz for 3-2-3 s. Torque and soleus electromyography were quantified at the beginning (Time(1)) and end (Time(2); 6-7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex ("asynchronous" activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX