Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Picornavirus Inhibitors: Trifluoromethyl Substitution Provides a Global Protective Effect against Hepatic Metabolism
Ist Teil von
Journal of medicinal chemistry, 1995-04, Vol.38 (8), p.1355-1371
Ort / Verlag
Washington, DC: American Chemical Society
Erscheinungsjahr
1995
Quelle
MEDLINE
Beschreibungen/Notizen
Several modifications of the oxazoline ring of WIN 54954, a broad spectrum antipicornavirus compound, have been prepared in order to address the acid lability and metabolic instability of this compound. We have previously shown that the oxadiazole analogue 3 displayed comparable activity against a variety of rhinoviruses and appeared to be stable to acid. A monkey liver microsomal assay was developed to examine the metabolic stability in vitro of both compounds, and it was determined that WIN 54954 displayed 18 metabolic products while 3 was converted to 8 products. Two major products of 3 were determined by LC-MS/MS to be monohydroxylated at each of the terminal methyl groups. Replacement of the methyl on the isoxazole ring with a trifluoromethyl group, while preventing hydroxylation at this position, did not reduce the sensitivity of the molecule to microsomal metabolism at other sites. However, the (trifluoromethyl)oxadiazole 9 not only prevented hydroxylation at this position but also provided protection at the isoxazole end of the molecule, resulting in only two minor products to the extent of 4%. The major product was identified as the monohydroxylated compound 23. The global metabolic protective effect of trifluoromethyl group on the oxadiazole ring was further demonstrated by examining a variety of analogues including heterocyclic replacements of the isoxazole ring. In each case, the trifluoromethyl analogue displayed a protective effect when compared to the corresponding methyl analogue.