Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 2144
The Journal of biological chemistry, 1986-03, Vol.261 (9), p.3944-3951
1986
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Insulin stimulates fluid-phase endocytosis and exocytosis in 3T3-L1 adipocytes
Ist Teil von
  • The Journal of biological chemistry, 1986-03, Vol.261 (9), p.3944-3951
Ort / Verlag
Bethesda, MD: Elsevier Inc
Erscheinungsjahr
1986
Quelle
MEDLINE
Beschreibungen/Notizen
  • Fluid phase endocytosis by monolayers of 3T3-L1 adipocytes has been followed by measuring [14C]sucrose uptake, a well characterized pinocytic marker. Insulin, at a maximal stimulatory concentration, increased the pinocytic rate by 2-fold within 5 min of its addition; this activation persisted for at least 2 h. The dose-response curve for the enhancement of fluid-phase endocytosis by insulin was identical with that for the stimulation of hexose transport, as measured by the uptake of 2-deoxyglucose. The concentration of insulin eliciting half-maximal effects was 6 nM. These results suggest that activation of endocytosis and hexose uptake by insulin are triggered by the same signalling event. Insulin-activated pinocytosis was not dependent upon the increased metabolism of D-glucose that occurs in response to the hormone, since the stimulation of fluid-phase endocytosis occurred in the absence of 5 nM glucose. Fluid-phase exocytosis was examined by loading cells with [14C]sucrose for various times and then measuring tracer efflux. The rate of sucrose release was biphasic; a portion of the internalized sucrose was rapidly released from the cell (t1/2 approximately 5 min), whereas the remainder was released slowly (t1/2 approximately to 5 h). These results are consistent with a sequential two-compartment model in which the [14C] sucrose first enters a compartment from which about 70% of the sucrose is rapidly released back into the medium and the remaining 30% is transferred to a second compartment. Therefore, the true rate of endocytosis is much greater than the observed accumulation rates, except after short uptake times. Insulin increases the rate of sucrose efflux from both compartments as well as the rate of transfer from the first compartment to the second compartment by about 2-fold. Furthermore, insulin increased the apparent size of the first and second compartments by 1.6- and 3-fold, respectively. The lysosomotropic agent chloroquine (200 muM) had only a small effect on fluid movements in these cells. The rapid and prolonged stimulation of fluid-phase endocytosis and exocytosis by insulin are hitherto unrecognized effects of this hormone.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX