Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 68

Details

Autor(en) / Beteiligte
Titel
Structure-activity relationships of GPR120 agonists based on a docking simulation
Ist Teil von
  • Molecular pharmacology, 2010-11, Vol.78 (5), p.804-810
Ort / Verlag
United States
Erscheinungsjahr
2010
Quelle
MEDLINE
Beschreibungen/Notizen
  • GPR120 is a G protein-coupled receptor expressed preferentially in the intestinal tract and adipose tissue, that has been implicated in mediating free fatty acid-stimulated glucagon-like peptide-1 (GLP-1) secretion. To develop GPR120-specific agonists, a series of compounds (denoted as NCG compounds) derived from a peroxisome proliferator-activated receptor γ agonist were synthesized, and their structure-activity relationships as GPR120 agonists were explored. To examine the agonistic activities of these newly synthesized NCG compounds, and of compounds already shown to have GPR120 agonistic activity (grifolic acid and MEDICA16), we conducted docking simulation in a GPR120 homology model that was developed on the basis of a photoactivated model derived from the crystal structure of bovine rhodopsin. We calculated the hydrogen bonding energies between the compounds and the GPR120 model. These energies correlated well with the GPR120 agonistic activity of the compounds (R(2) = 0.73). NCG21, the NCG compound with the lowest calculated hydrogen bonding energy, showed the most potent extracellular signal-regulated kinase (ERK) activation in a cloned GPR120 system. Furthermore, NCG21 potently activated ERK, intracellular calcium responses and GLP-1 secretion in murine enteroendocrine STC-1 cells that express GPR120 endogenously. Moreover, administration of NCG21 into the mouse colon caused an increase in plasma GLP-1 levels. Taken together, our present study showed that a docking simulation using a GPR120 homology model might be useful to predict the agonistic activity of compounds.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX