Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 32

Details

Autor(en) / Beteiligte
Titel
Fast reduction of undersampling artifacts in radial MR angiography with 3D total variation on graphics hardware
Ist Teil von
  • Magma (New York, N.Y.), 2010-04, Vol.23 (2), p.103-114
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2010
Quelle
MEDLINE
Beschreibungen/Notizen
  • Objective Subsampling of radially encoded MRI acquisitions in combination with sparsity promoting methods opened a door to significantly increased imaging speed, which is crucial for many important clinical applications. In particular, it has been shown recently that total variation (TV) regularization efficiently reduces undersampling artifacts. The drawback of the method is the long reconstruction time which makes it impossible to use in daily clinical practice, especially if the TV optimization problem has to be solved repeatedly to select a proper regularization parameter. Materials and Methods The goal of this work was to show that for the case of MR Angiography, TV filtering can be performed as a post-processing step, in contrast to the common approach of integrating TV penalties in the image reconstruction process. With this approach, it is possible to use TV algorithms with data fidelity terms in image space, which can be implemented very efficiently on graphic processing units (GPUs). The combination of a special radial sampling trajectory and a full 3D formulation of the TV minimization problem is crucial for the effectiveness of the artifact elimination process. Results and Conclusion The computation times of GPU-TV show that interactive elimination of undersampling artifacts is possible even for large volume data sets, in particular allowing the interactive determination of the regularization parameter. Results from phantom measurements and in vivo angiography data sets show that 3D TV, together with the proposed sampling trajectory, leads to pronounced improvements in image quality. However, while artifact removal was very efficient for angiography data sets in this work, it cannot be expected that the proposed method of TV post-processing will work for arbitrary types of scans.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX