Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
On Bernoulli decompositions for random variables, concentration bounds, and spectral localization
Ist Teil von
Probability theory and related fields, 2009-01, Vol.143 (1-2), p.219-238
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2009
Quelle
EBSCOhost Business Source Ultimate
Beschreibungen/Notizen
As was noted already by A. N. Kolmogorov, any random variable has a Bernoulli component. This observation provides a tool for the extension of results which are known for Bernoulli random variables to arbitrary distributions. Two applications are provided here: (i) an anti-concentration bound for a class of functions of independent random variables, where probabilistic bounds are extracted from combinatorial results, and (ii) a proof, based on the Bernoulli case, of spectral localization for random Schrödinger operators with arbitrary probability distributions for the single site coupling constants. For a general random variable, the Bernoulli component may be defined so that its conditional variance is uniformly positive. The natural maximization problem is an optimal transport question which is also addressed here.