Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 20

Details

Autor(en) / Beteiligte
Titel
High Temperature VARTM of Phenylethynyl Terminated Imides
Ist Teil von
  • High performance polymers, 2009-10, Vol.21 (5), p.653-672
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2009
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Depending on the part type and quantity, fabrication of composite structures using vacuum-assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 or 280 °C and cured at temperature up to 371 °C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this led to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically ∼ 3% or less). The results of this work are presented herein.
Sprache
Englisch
Identifikatoren
ISSN: 0954-0083
eISSN: 1361-6412
DOI: 10.1177/0954008309339935
Titel-ID: cdi_proquest_miscellaneous_743230886
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX