Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Supernatant protein factor (SPF) promotes the epoxidation of squalene catalyzed by microsomes. Several studies suggest its in vivo role in the cholesterol biosynthetic pathway by a yet unknown mechanism. SPF belongs to a family of lipid binding proteins called CRAL_TRIO, which include yeast phosphatidylinositol transfer protein Sec14 and tocopherol transfer protein TTP. The crystal structure of human SPF at a resolution of 1.9 Å reveals a two domain topology. The N-terminal 275 residues form a Sec14-like domain, while the C-terminal 115 residues consist of an eight-stranded jelly-roll barrel similar to that found in many viral protein structures. The ligand binding cavity has a peculiar horseshoe-like shape. Contrary to the Sec14 crystal structure, the lipid-exchange loop is in a closed conformation, suggesting a mechanism for lipid exchange.