Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
This paper describes the construction of cortical metrics quantifying the probabilistic occurrence of gray matter, white matter, and cerebrospinal fluid compartments in their correlation to the geometry of the neocortex as measured in 0.5–1.0 mm magnetic resonance imagery. These cortical profiles represent the density of the tissue types as a function of distance to the cortical surface. These metrics are consistent when generated across multiple brains indicating a fundamental property of the neocortex. Methods are proposed for incorporating such metrics into automated Bayes segmentation.