Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Troglitazone Ameliorates Abnormal Activity of Protein Tyrosine Phosphatase in Adipose Tissues of Otsuka Long-Evans Tokushima Fatty Rats
Ist Teil von
The Tohoku Journal of Experimental Medicine, 2002, Vol.197(3), pp.169-181
Ort / Verlag
Japan: Tohoku University Medical Press
Erscheinungsjahr
2002
Quelle
MEDLINE
Beschreibungen/Notizen
Protein tyrosine phosphatases (PTPases) play an essential role in the regulation of steady-state phosphorylation of the insulin receptor and other proteins in the insulin signaling pathway. To determine the role of PTPases in adipose tissue in the development into an insulin-resistant state, we examined PTPase activities and protein levels of three major candidate PTPases in adipose tissues of 26-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Particulate PTPase activities in visceral and epididymal adipose tissues of OLETF rats were increased compared to those in Long-Evans Tokushima Otsuka (LETO) rats, non-insulin-resistant controls. Cytosolic PTPase activities in these tissues were conversely decreased in OLETF rats. In subcutaneous adipose tissues, those changes were not observed. Western blot analysis showed that the amounts of leukocyte antigen-related PTPase (LAR), PTPase 1B (PTP1B), and src homology 2-containing PTPase (SH-PTP2) were increased in particulate fractions of visceral and epididymal fat of OLETF rats. On the other hand, those in the cytosolic fractions were slightly decreased. Troglitazone was administered to OLETF rats to examine the effect of the drug on the changes in PTPase activity and distribution. Troglitazone treatment restored those alterations in PTPase activity in the particulate fraction and the amounts of LAR, PTP1B and SH-PTP2 in both fractions of visceral and epididymal adipose tissues of OLETF rats. Although it remains unknown whether such effects of troglitazone are mediated by peroxisome proliferator-activated receptor γ, these data provide useful information for understanding the significance of PTPase in insulin-resistant rats and the molecular mechanism of troglitazone action.