Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 15

Details

Autor(en) / Beteiligte
Titel
Solution Structure of the Single-domain Prolyl Cis/ Trans Isomerase PIN1At from Arabidopsis thaliana
Ist Teil von
  • Journal of molecular biology, 2002-07, Vol.320 (2), p.321-332
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2002
Link zum Volltext
Quelle
Elsevier Journal Backfiles on ScienceDirect (DFG Nationallizenzen)
Beschreibungen/Notizen
  • The 119-amino acid residue prolyl cis/ trans isomerase from Arabidopsis thaliana (PIN1At) is similar to the catalytic domain of the human hPIN1. However, PIN1At lacks the N-terminal WW domain that appears to be essential for the hPIN1 function. Here, the solution structure of PIN1At was determined by three-dimensional nuclear magnetic resonance spectroscopy. The PIN1At fold could be superimposed on that of the catalytic domain of hPIN1 and had a 19 residue flexible loop located between strand β1 and helix α1. The dynamical features of this β1/α1-loop, which are characteristic for a region involved in protein–protein interactions, led to exchange broadening in the NMR spectra. When sodium sulfate salt was added to the protein sample, the β1/α1 loop was stabilized and, hence, a complete backbone resonance assignment was obtained. Previously, with a phospho-Cdc25 peptide as substrate, PIN1At had been shown to catalyze the phosphoserine/phosphothreonine prolyl cis/ trans isomerization specifically. To map the catalytic site of PIN1At, the phospho-Cdc25 peptide or sodium sulfate salt was added in excess to the protein and chemical shift changes in the backbone amide protons were monitored in the 1H N– 15N heteronuclear single quantum coherence spectrum. The peptide caused perturbations in the loops between helix α4 and strand β3, between strands β3 and β4, in the α3 helix, and in the β1/α1 loop. The amide groups of the residues Arg21 and Arg22 showed large chemical shift perturbations upon phospho-Cdc25 peptide or sulfate addition. We conclude that this basic cluster formed by Arg21 and Arg22, both located in the β1/α1 loop, is homologous to that found in the hPIN1 crystal structure (Arg68 and Arg69), which also is involved in sulfate ion binding. We showed that the sulfate group competed for the interaction between PIN1At and the phospho-Cdc25 peptide. In the absence of the WW domain, three hydrophobic residues (Ile33, Ile34, and Leu35) located in the long flexible loop and specific for the plant PIN-type peptidyl prolyl cis/ trans isomerases (PPIases) could be an additional interaction site in PIN1At. However, phospho-peptide addition did not affect the resonances of these residues significantly. Electrostatic potential calculations revealed a negatively charged area not found in hPIN1 on the PIN1At molecular surface, which corresponds to the surface shielded by the WW domain in hPIN1. Based on our experimental results and the molecular specificities of the PIN1At enzyme, functional implications of the lack of WW domains in this plant PIN-type PPIase will be discussed.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX