Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ceramide is a pivotal molecule in signal transduction and an essential structural component of the epidermal permeability barrier. The epidermis is marked by a high concentration of ceramide and by a unique spectrum of ceramide species: Besides the two ceramide structures commonly found in mammalian tissue, N-acylsphingosine and N-2-hydroxyacyl-sphingosine, six additional ceramides differing in the grade of hydroxylation of either the sphingosine base or the fatty acid have been identified in the epidermis. Here we report on the characterization of an IgM-enriched polyclonal mouse serum against ceramide. In dot blot assays with purified epidermal lipids the antiserum bound to a similar extent to N-acyl-sphingosine (ceramide 2), N-acyl-4-hydroxysphinganine (ceramide 3), and N-(2-hydroxyacyl)-sphingosine (ceramide 5), whereas no specific reaction was detected with glycosylceramides, sphingomyelin, free sphingosine, phospholipids, or cholesterol. In contrast, a monoclonal IgM antibody, also claimed to be specific for ceramide, was shown to bind specifically to sphingomyelin and therefore was not further investigated. In thin-layer chromatography immunostaining with purified lipids a strong and highly reproducible reaction of the antiserum with ceramide 2 and ceramide 5 was observed, whereas the reaction with ceramide 1 and ceramide 3 was weaker and more variable. Ceramide 2 and ceramide 5 were detected in the nanomolar range at serum dilutions of up to 1:100 by dot blot and thin-layer immunostaining. In thin-layer chromatography immunostaining of crude lipid extracts from human epidermis, the antiserum also reacted with N-(2-hydroxyacyl)-4-hydroxysphinganine (ceramide 6) and N-(2-hydroxyacyl)-6-hydroxysphingosine (ceramide 7). Furthermore, the suitability of the antiserum for the detection of endogenous ceramide by immunolight microscopy was demonstrated on cryoprocessed human skin tissue. Double immunofluorescence labeling experiments with the anti-ceramide antiserum and the recently described anti-glucosylceramide antiserum (Brade et al., 2000, Glycobiology 10, 629) showed that both lipids are concentrated in separate epidermal sites. Whereas anti-ceramide stained the dermal and basal epidermal cells as well as the corneocytes, anti-glucosylceramide staining was concentrated in the stratum granulosum. In conclusion, the specificity and sensitivity of the reagent will enable studies on the subcellular distribution and biological functions of endogenous ceramide.