Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 192
Journal of the American Chemical Society, 2007-03, Vol.129 (11), p.3376-3382
2007
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Hydration Dynamics and Time Scales of Coupled Water−Protein Fluctuations
Ist Teil von
  • Journal of the American Chemical Society, 2007-03, Vol.129 (11), p.3376-3382
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2007
Quelle
MEDLINE
Beschreibungen/Notizen
  • We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water−protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water−protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water−protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.
Sprache
Englisch
Identifikatoren
ISSN: 0002-7863
eISSN: 1520-5126
DOI: 10.1021/ja0685957
Titel-ID: cdi_proquest_miscellaneous_70264105

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX