Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 16

Details

Autor(en) / Beteiligte
Titel
Activation of Retinal Guanylyl Cyclase-1 by Ca2+-binding Proteins Involves Its Dimerization
Ist Teil von
  • The Journal of biological chemistry, 1999-05, Vol.274 (22), p.15547-15555
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
1999
Quelle
MEDLINE
Beschreibungen/Notizen
  • Retinal guanylyl cyclase-1 (retGC-1), a key enzyme in phototransduction, is activated by guanylyl cyclase-activating proteins (GCAPs) if [Ca2+] is less than 300 nm. The activation is believed to be essential for the recovery of photoreceptors to the dark state; however, the molecular mechanism of the activation is unknown. Here, we report that dimerization of retGC-1 is involved in its activation by GCAPs. The GC activity and the formation of a 210-kDa cross-linked product of retGC-1 were monitored in bovine rod outer segment homogenates, GCAPs-free bovine rod outer segment membranes and recombinant bovine retGC-1 expressed in COS-7 cells. In addition to recombinant bovine GCAPs, constitutively active mutants of GCAPs that activate retGC-1 in a [Ca2+]-independent manner and bovine brain S100b that activates retGC-1 in the presence of ∼10 μm [Ca2+] were used to investigate whether these activations take place through a similar mechanism, and whether [Ca2+] is directly involved in the dimerization. We found that a monomeric form of retGC-1 (∼110 kDa) was mainly observed whenever GC activity was at basal or low levels. However, the 210-kDa product was increased whenever the GC activity was stimulated by any Ca2+-binding proteins used. We also found that [Ca2+] did not directly regulate the formation of the 210-kDa product. The 210-kDa product was detected in a purified GC preparation and did not contain GCAPs even when the formation of the 210-kDa product was stimulated by GCAPs. These data strongly suggest that the 210-kDa cross-linked product is a homodimer of retGC-1. We conclude that inactive retGC-1 is predominantly a monomeric form, and that dimerization of retGC-1 may be an essential step for its activation by active forms of GCAPs.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX