Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
We discuss the form of the entropy for classical Hamiltonian systems with long-range interaction using the Vlasov equation which describes the dynamics of a N particle in the limit N-->infinity. The stationary states of the Hamiltonian system are subject to infinite conserved quantities due to the Vlasov dynamics. We show that the stationary states correspond to an extremum of the Boltzmann-Gibbs entropy, and their stability is obtained from the condition that this extremum is a maximum. As a consequence, the entropy is a function of an infinite set of Lagrange multipliers that depend on the initial condition. We also discuss in this context the meaning of ensemble inequivalence and the temperature.