Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Myocardial insulin-like growth factor-I gene expression during recovery from heart failure after combined left ventricular assist device and clenbuterol therapy
Ist Teil von
Circulation (New York, N.Y.), 2005-08, Vol.112 (9), p.I46-I50
Ort / Verlag
Hagerstown, MD: Lippincott Williams & Wilkins
Erscheinungsjahr
2005
Quelle
MEDLINE
Beschreibungen/Notizen
Patients who undergo mechanical support with a left ventricular assist device (LVAD) exhibit reverse remodeling and in some cases recover from heart failure. We have developed a combination therapy using LVAD support combined with pharmacological therapy to maximize reverse remodeling, followed by the beta2 adrenergic agonist clenbuterol. We recently found that clenbuterol induces insulin-like growth factor I (IGF-I) in cardiac myocytes in vitro. The purpose of this study is to examine IGF-I expression in recovery patients after combination therapy.
Myocardial mRNA levels were determined by real-time quantitative polymerase chain reaction in 12 recovery patients (at LVAD implantation, explantation, and 1 year after explantation). IGF-I mRNA was elevated at the time of LVAD explantation relative to donors, with 2 groups distinguishable: Those with low IGF-I mRNA at implantation who showed significant increase during recovery and those with high IGF-I mRNA at implantation who remained high. Levels returned to normal by 1 year after explantation. Microarray analysis of implantation and explantation samples of recovery patients further revealed elevated IGF-II and IGF binding proteins IGFBP4 and IGFBP6. IGF-I levels correlated with stromal cell-derived factor mRNA measured both in LVAD patients and in a wider cohort of heart failure patients.
The data suggest involvement of elevated myocardial IGF-I mRNA in recovery. IGF-I may act to limit atrophy and apoptosis during reverse remodeling and to promote repair and regeneration in concert with stromal cell derived factor.