Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The Arabidopsis Protein Kinase PTI1-2 Is Activated by Convergent Phosphatidic Acid and Oxidative Stress Signaling Pathways Downstream of PDK1 and OXI1
Ist Teil von
The Journal of biological chemistry, 2006-12, Vol.281 (49), p.37536-37546
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2006
Quelle
MEDLINE
Beschreibungen/Notizen
Arabidopsis PDK1 activity is regulated by binding to the lipid phosphatidic acid (PA) resulting in activation of the oxidative stress-response protein kinase OXI1/AGC2-1. Thus there is an inferred link between lipid signaling and oxidative stress signaling modules. Among a panel of hormones and stresses tested, we found that, in addition to PA, the fungal elicitor xylanase activated PDK1, suggesting that PDK1 has a role in plant pathogen defense mechanisms. The downstream OXI1 was activated by additional stress factors, including PA, H2O2, and partially by xylanase. We have isolated an interacting partner of OXI1, a Ser/Thr kinase (PTI1-2), which is downstream of OXI1. Its sequence closely resembles the tomato Pti kinase, which has been implicated in the hypersensitive response, a localized programmed cell death that occurs at the site of pathogen infection. PTI1-2 is activated by the same stresses/elicitors as OXI1 and additionally flagellin. We have used RNA interference to knock out the expression of PDK1 and OXI1 and to study the effects on PTI1-2 activity. We show that specific lipid signaling pathways converge on PTI1-2 via the PDK1-OXI1 axis, whereas H2O2 and flagellin signals to OXI1-PTI1-2 via a PDK1-independent pathway. PTI1-2 represents a new downstream component that integrates diverse lipid and reactive oxygen stress signals and functions closely with OXI1.