Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 62

Details

Autor(en) / Beteiligte
Titel
Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket)
Ist Teil von
  • Journal of agricultural and food chemistry, 2006-05, Vol.54 (11), p.4005-4015
Ort / Verlag
Washington, DC: American Chemical Society
Erscheinungsjahr
2006
Quelle
MEDLINE
Beschreibungen/Notizen
  • As an influence of the Mediterranean diet, rocket species such as Eruca sativa L., Diplotaxis species, and Bunias orientalis L. are eaten all over the world at different ontogenic stages in salads and soups. They are all species within the plant order Capparales (glucosinolate-containing species), and all are from the family Brassicaceae. Predominantly, the leaves of these species are eaten raw or cooked, although Eruca flowers are also consumed. There is considerable potential with raw plant material for a higher exposure to bioactive phytochemicals such as glucosinolates, their hydrolysis products, and also phenolics, flavonoids, and vitamins such as vitamin C. These compounds are susceptible to ontogenic variation, and the few published studies that have addressed this topic have been inconsistent. Thus, an ontogenic study was performed and all samples were analyzed using a previously developed robust liquid chromatography/mass spectrometry method for the identification and quantification of the major phytochemicals in all tissues of the rocket species. Seeds and roots of both Eruca and Diplotaxis contained predominantly 4-methylthiobutylglucosinolate. Leaves of Eruca and Diplotaxis contained high amounts of 4-mercaptobutylglucosinolate with lower levels of 4-methylthiobutlyglucosinolate and 4-methylsulfinylbutylglucosinolate. Flowers of Eruca and Diplotaxis contained predominantly 4-methylsulfinylbutyl-glucosinolate. In addition, roots of both Diplotaxis species contained 4-hydroxybenzylglucosinolate but 4-hydroxybenzylglucosinolate was absent from roots of Eruca. Seeds and seedlings of all Eruca contained N-heterocyclic compounds but no sinapine, whereas Diplotaxis contained sinapine but not the N-heterocycles. In all tissues of B. orientalis, 4-hydroxybenzylglucosinolate and 4-methylsulfinyl-3-butenylglucosinolate were predominant. All rocket tissues, except roots, contained significant levels of polyglycosylated flavonoids, with/without hydroxycinnamoyl acylation. The core aglycones were kaempferol, quercetin, and isorhamnetin. The exception was B. orientalis, which had a negligible seed flavonoid content as compared with the other species. Anthocyanins were only detected in Eruca flowers and consisted of a complex pattern of at least 16 different anthocyanins. Keywords: Eruca sativa; Diplotaxis tenuifolia; Diplotaxis erucoides; Bunias orientalis; salad crucifers; glucosinolates; complex flavonoids; sinapine; anthocyanins, ontogenic regulation; LC/MS

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX