Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules
Ist Teil von
Chemphyschem, 2009-07, Vol.10 (9-10), p.1389-1398
Ort / Verlag
Weinheim: WILEY-VCH Verlag
Erscheinungsjahr
2009
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
Macromolecular dynamics: A technique for probing conformational dynamics of biomolecules based on contact‐induced fluorescence quenching is discussed. Photoinduced electron transfer can be used to monitor structural variations with single‐molecule sensitivity on sub‐nanometre length scales and with nanosecond temporal resolution (see figure).
Photoinduced electron transfer (PET) between organic fluorophores and suitable electron donating moieties, for example, the amino acid tryptophan or the nucleobase guanine, can quench fluorescence upon van der Waals contact and thus report on molecular contact. PET‐quenching has been used as reporter for monitoring conformational dynamics in polypeptides, proteins, and oligonucleotides. Whereas dynamic quenching transiently influences quantum yield and fluorescence lifetime of the fluorophore, static quenching in π‐stacked complexes efficiently suppresses fluorescence emission over time scales longer than the fluorescence lifetime. Static quenching therefore provides sufficient contrast to be observed at the single‐molecule level. Here, we review complex formation and static quenching of different fluorophores by various molecular compounds, discuss applications as reporter system for macromolecular dynamics, and give illustrating examples.
Macromolecular dynamics: A technique for probing conformational dynamics of biomolecules based on contact‐induced fluorescence quenching is discussed. Photoinduced electron transfer can be used to monitor structural variations with single‐molecule sensitivity on sub‐nanometre length scales and with nanosecond temporal resolution (see figure).