Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 381

Details

Autor(en) / Beteiligte
Titel
Regulation of the Human Cardiac Mitochondrial Ca2+ Uptake by 2 Different Voltage-Gated Ca2+ Channels
Ist Teil von
  • Circulation (New York, N.Y.), 2009-05, Vol.119 (18), p.2435-2443
Ort / Verlag
Hagerstown, MD: Lippincott Williams & Wilkins
Erscheinungsjahr
2009
Quelle
MEDLINE
Beschreibungen/Notizen
  • Impairment of intracellular Ca(2+) homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca(2+) uptake is thought to be mediated by the Ca(2+) uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive. By patch clamping the inner membrane of mitochondria from nonfailing and failing human hearts, we have identified 2 previously unknown Ca(2+)-selective channels, referred to as mCa1 and mCa2. Both channels are voltage dependent but differ significantly in gating parameters. Compared with mCa2 channels, mCa1 channels exhibit a higher single-channel amplitude, shorter openings, a lower open probability, and 3 to 5 subconductance states. Similar to the MCU, mCa1 is inhibited by 200 nmol/L ruthenium 360, whereas mCa2 is insensitive to 200 nmol/L ruthenium 360 and reduced only by very high concentrations (10 micromol/L). Both mitochondrial Ca(2+) channels are unaffected by blockers of other possibly Ca(2+)-conducting mitochondrial pores but were activated by spermine (1 mmol/L). Notably, activity of mCa1 and mCa2 channels is decreased in failing compared with nonfailing heart conditions, making them less effective for Ca(2+) uptake and likely Ca(2+)-induced metabolism. Thus, we conclude that the human mitochondrial Ca(2+) uptake is mediated by these 2 distinct Ca(2+) channels, which are functionally impaired in heart failure. Current properties reveal that the mCa1 channel underlies the human MCU and that the mCa2 channel is responsible for the ruthenium red-insensitive/low-sensitivity non-MCU-type mitochondrial Ca(2+) uptake.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX