Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 448
Knowledge and information systems, 2008-03, Vol.14 (3), p.327-346
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Random walk with restart: fast solutions and applications
Ist Teil von
  • Knowledge and information systems, 2008-03, Vol.14 (3), p.327-346
Ort / Verlag
London: Springer-Verlag
Erscheinungsjahr
2008
Quelle
SpringerLink
Beschreibungen/Notizen
  • How closely related are two nodes in a graph? How to compute this score quickly, on huge, disk-resident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captioning of images, generalizations to the “connection subgraphs”, personalized PageRank, and many more. However, the straightforward implementations of RWR do not scale for large graphs, requiring either quadratic space and cubic pre-computation time, or slow response time on queries. We propose fast solutions to this problem. The heart of our approach is to exploit two important properties shared by many real graphs: (a) linear correlations and (b) block-wise, community-like structure. We exploit the linearity by using low-rank matrix approximation, and the community structure by graph partitioning, followed by the Sherman–Morrison lemma for matrix inversion. Experimental results on the Corel image and the DBLP dabasets demonstrate that our proposed methods achieve significant savings over the straightforward implementations: they can save several orders of magnitude in pre-computation and storage cost, and they achieve up to 150 × speed up with 90%+ quality preservation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX