Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Prediction of blast-induced ground vibration using artificial neural network
Ist Teil von
International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2009-10, Vol.46 (7), p.1214-1222
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2009
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
An attempt has been made to evaluate and predict the blast-induced ground vibration and frequency by incorporating rock properties, blast design and explosive parameters using the artificial neural network (ANN) technique. A three-layer, feed-forward back-propagation neural network having 15 hidden neurons, 10 input parameters and two output parameters were trained using 154 experimental and monitored blast records from one of the major producing surface coal mines in India. Twenty new blast data sets were used for the validation and comparison of the peak particle velocity (PPV) and frequency by ANN and other predictors. To develop more confidence in the proposed method, same data sets have also been used for the prediction of PPV by commonly used vibration predictors as well as by multivariate regression analysis (MVRA). Results were compared based on correlation and mean absolute error (MAE) between monitored and predicted values of PPV and frequency.