Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 1426
IEEE transactions on power delivery, 2008-01, Vol.23 (1), p.280-287
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network
Ist Teil von
  • IEEE transactions on power delivery, 2008-01, Vol.23 (1), p.280-287
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2008
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper presents an S-Transform based probabilistic neural network (PNN) classifier for recognition of power quality (PQ) disturbances. The proposed method requires less number of features as compared to wavelet based approach for the identification of PQ events. The features extracted through the S-Transform are trained by a PNN for automatic classification of the PQ events. Since the proposed methodology can reduce the features of the disturbance signal to a great extent without losing its original property, less memory space and learning PNN time are required for classification. Eleven types of disturbances are considered for the classification problem. The simulation results reveal that the combination of S-Transform and PNN can effectively detect and classify different PQ events. The classification performance of PNN is compared with a feedforward multilayer (FFML) neural network (NN) and learning vector quantization (LVQ) NN. It is found that the classification performance of PNN is better than both FFML and LVQ.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX