UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 13 von 46
Datensatz exportieren als...
BibTeX
The implementation of robotic dogs in automatic detection and surveillance of red imported fire ant nests
Pest management science, 2024-10, Vol.80 (10), p.5277-5285
Su, Xin
Shi, Guijie
Zhong, Jiamei
Li, Yuling
Dai, Wennan
Xu, Augix Guohua
Fox, Eduardo GP
Xu, Jinzhu
Qiu, Hualong
Yan, Zheng
2024
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Su, Xin
Shi, Guijie
Zhong, Jiamei
Li, Yuling
Dai, Wennan
Xu, Augix Guohua
Fox, Eduardo GP
Xu, Jinzhu
Qiu, Hualong
Yan, Zheng
Titel
The implementation of robotic dogs in automatic detection and surveillance of red imported fire ant nests
Ist Teil von
Pest management science, 2024-10, Vol.80 (10), p.5277-5285
Ort / Verlag
Chichester, UK: John Wiley & Sons, Ltd
Erscheinungsjahr
2024
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
BACKGROUND The Red Imported Fire Ant (RIFA), scientifically known as Solenopsis invicta, is a destructive invasive species causing considerable harm to ecosystems and generating substantial economic costs globally. Traditional methods for RIFA nests detection are labor‐intensive and may not be scalable to larger field areas. This study aimed to develop an innovative surveillance system that leverages artificial intelligence (AI) and robotic dogs to automate the detection and geolocation of RIFA nests, thereby improving monitoring and control strategies. RESULTS The designed surveillance system, through integrating the CyberDog robotic platform with a YOLOX AI model, demonstrated RIFA nest detection precision rates of >90%. The YOLOX model was trained on a dataset containing 1118 images and achieved a final precision rate of 0.95, with an inference time of 20.16 ms per image, indicating real‐time operational suitability. Field tests revealed that the CyberDog system identified three times more nests than trained human inspectors, with significantly lower rates of missed detections and false positives. CONCLUSION The findings underscore the potential of AI‐driven robotic systems in advancing pest management. The CyberDog/YOLOX system not only matched human inspectors in speed, but also exceeded them in accuracy and efficiency. This study's results are significant as they highlight how technology can be harnessed to address biological invasions, offering a more effective, ecologically friendly, and scalable solution for RIFA detection. The successful implementation of this system could pave the way for broader applications in environmental monitoring and pest control, ultimately contributing to the preservation of biodiversity and economic stability. © 2024 Society of Chemical Industry. This AI‐driven system with robotic dogs detects S. invicta nests, potentially replacing humans in pest control.
Sprache
Englisch
Identifikatoren
ISSN: 1526-498X, 1526-4998
eISSN: 1526-4998
DOI: 10.1002/ps.8254
Titel-ID: cdi_proquest_miscellaneous_3074134436
Format
–
Schlagworte
agriculture 4.0
,
AI applications
,
Animals
,
Ants
,
Artificial Intelligence
,
Biodiversity
,
Biological effects
,
Control stability
,
Control systems
,
Dogs
,
Economic impact
,
Environmental monitoring
,
Field tests
,
Fire Ants
,
Insect Control - instrumentation
,
Insect Control - methods
,
Introduced Species
,
invasive ants
,
Invasive insects
,
Invasive species
,
Nesting Behavior
,
Pest control
,
pest management
,
Pests
,
Robot control
,
robotic dog
,
Robotics
,
Solenopsis invicta
,
Surveillance
,
Surveillance systems
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX