Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Unveiling candidate genes for metabolic resistance to malathion in Aedes albopictus through RNA sequencing-based transcriptome profiling
Ist Teil von
  • PLoS neglected tropical diseases, 2024-06, Vol.18 (6), p.e0012243
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2024
Quelle
MEDLINE
Beschreibungen/Notizen
  • Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX