Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm
Ist Teil von
  • Quantitative imaging in medicine and surgery, 2024-06, Vol.14 (6), p.3837-3850
Ort / Verlag
AME Publishing Company
Erscheinungsjahr
2024
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Coronary artery disease (CAD) is the leading cause of mortality worldwide. Recent advances in deep learning technology promise better diagnosis of CAD and improve assessment of CAD plaque buildup. The purpose of this study is to assess the performance of a deep learning algorithm in detecting and classifying coronary atherosclerotic plaques in coronary computed tomographic angiography (CCTA) images.BackgroundCoronary artery disease (CAD) is the leading cause of mortality worldwide. Recent advances in deep learning technology promise better diagnosis of CAD and improve assessment of CAD plaque buildup. The purpose of this study is to assess the performance of a deep learning algorithm in detecting and classifying coronary atherosclerotic plaques in coronary computed tomographic angiography (CCTA) images.Between January 2019 and September 2020, CCTA images of 669 consecutive patients with suspected CAD from Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine were included in this study. There were 106 patients included in the retrospective plaque detection analysis, which was evaluated by a deep learning algorithm and four independent physicians with varying clinical experience. Additionally, 563 patients were included in the analysis for plaque classification using the deep learning algorithm, and their results were compared with those of expert radiologists. Plaques were categorized as absent, calcified, non-calcified, or mixed.MethodsBetween January 2019 and September 2020, CCTA images of 669 consecutive patients with suspected CAD from Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine were included in this study. There were 106 patients included in the retrospective plaque detection analysis, which was evaluated by a deep learning algorithm and four independent physicians with varying clinical experience. Additionally, 563 patients were included in the analysis for plaque classification using the deep learning algorithm, and their results were compared with those of expert radiologists. Plaques were categorized as absent, calcified, non-calcified, or mixed.The deep learning algorithm exhibited higher sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy {92% [95% confidence interval (CI): 89.5-94.1%], 87% (95% CI: 84.2-88.5%), 79% (95% CI: 76.1-82.4%), 95% (95% CI: 93.4-96.3%), and 89% (95% CI: 86.9-90.0%)} compared to physicians with ≤5 years of clinical experience in CAD diagnosis for the detection of coronary plaques. The algorithm's overall sensitivity, specificity, PPV, NPV, accuracy, and Cohen's kappa for plaque classification were 94% (95% CI: 92.3-94.7%), 90% (95% CI: 88.8-90.3%), 70% (95% CI: 68.3-72.1%), 98% (95% CI: 97.8-98.5%), 90% (95% CI: 89.8-91.1%) and 0.74 (95% CI: 0.70-0.78), indicating strong performance.ResultsThe deep learning algorithm exhibited higher sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy {92% [95% confidence interval (CI): 89.5-94.1%], 87% (95% CI: 84.2-88.5%), 79% (95% CI: 76.1-82.4%), 95% (95% CI: 93.4-96.3%), and 89% (95% CI: 86.9-90.0%)} compared to physicians with ≤5 years of clinical experience in CAD diagnosis for the detection of coronary plaques. The algorithm's overall sensitivity, specificity, PPV, NPV, accuracy, and Cohen's kappa for plaque classification were 94% (95% CI: 92.3-94.7%), 90% (95% CI: 88.8-90.3%), 70% (95% CI: 68.3-72.1%), 98% (95% CI: 97.8-98.5%), 90% (95% CI: 89.8-91.1%) and 0.74 (95% CI: 0.70-0.78), indicating strong performance.The deep learning algorithm has demonstrated reliable and accurate detection and classification of coronary atherosclerotic plaques in CCTA images. It holds the potential to enhance the diagnostic capabilities of junior radiologists and junior intervention cardiologists in the CAD diagnosis, as well as to streamline the triage of patients with acute coronary symptoms.ConclusionsThe deep learning algorithm has demonstrated reliable and accurate detection and classification of coronary atherosclerotic plaques in CCTA images. It holds the potential to enhance the diagnostic capabilities of junior radiologists and junior intervention cardiologists in the CAD diagnosis, as well as to streamline the triage of patients with acute coronary symptoms.
Sprache
Englisch
Identifikatoren
ISSN: 2223-4292
eISSN: 2223-4306
DOI: 10.21037/qims-23-1513
Titel-ID: cdi_proquest_miscellaneous_3065984674
Format
Schlagworte
Original

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX